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Abstract Knowledge of wood aging and the property changes of aged wood

compared with recent wood are crucial for conservation of wooden cultural heritage

objects and historic buildings constructed of wood and also for the reuse of old

construction wood. Therefore, a thorough literature review is presented about the

different aspects of wood aging to provide a database for further investigations. One

focus lies on the different kinds of aging: natural aging under aerobic and anaerobic

storage conditions in contrast to accelerated aging under heat treatment. Further,

influencing factors like wood treatment and long-term loading on the aging process

are discussed. Property changes of naturally aged wood that has been stored under

aerobic conditions are also researched. The resulting chemical, physical, and

mechanical changes are thus discussed as well as any changes in color.

Introduction

Wood has served humanity in many different functions since ancient times (e.g.,

constructions, tools, furniture, energy), and it is still valued as one of our most

important raw materials. Therefore, a wide range of wood properties have been

investigated and documented up to the present (cf. Wagenführ 2007); however,

these properties have mostly been derived from tests on recent wood samples, yet

the aging process of wood and the properties of aged wood have been so far scarcely
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investigated. Furthermore, knowledge of the properties of aged wood is not only

important for the conservation of wooden heritage and historic wood constructions,

but it must also be considered when recycling wood. Thereby, chemical, physical,

and mechanical property changes are of great interest. To this aim, a thorough

literature study is presented on the different aspects of wood aging with focus on

sound, naturally aged wood stored in dry air. The review is based on studies carried

out during the PhD of Kránitz (2015).

The literature study is split into two parts. The first part deals with the different

kinds of aging. Therein, natural aging under aerobic and anaerobic storage

conditions as well as accelerated aging under heat treatment is discussed, and the

influences of wood treatment and long-term loading on the aging process are

investigated. The second part deals with the property changes of naturally aged

wood and concerns its chemistry, color, and hygroscopic and mechanical behaviors.

Due to difficulty of specimen matching, the aging effect is not always easy to

clarify. In many cases, only small quantities of sound, aged wood are available for

research purposes. In addition, the history of the investigated material is usually not

known in detail (e.g., storage conditions which play a crucial role in the aging

process). Normally, no information about the original properties of the investigated

material is available. Therefore, results for aged wood are commonly compared to

values of recent material with different growing conditions (climate, exposition,

forest stand, etc.) and properties (density, annual ring width, microfibril angle, etc.)

which complicate the comparison. This should be kept in mind when interpreting

the results.

The biotic degradation of old wood, which is not a theme of this study, is another

important and great research field within the topic of wood aging. A detailed

introduction concerning the properties of aged and archeological wood, including

biologically deteriorated wood and its conservation, can be found in Rowell and

Barbour (1990) and Unger et al. (2001).

Aging of wood

Natural aging

Definition

Aging is understood as the irreversible change of physical, chemical, and

mechanical properties of a material during extended storage or usage. Deterioration

therefore may occur because of climatic and environmental factors, but also through

wood-destroying organisms (insects, fungi, bacteria, and marine borers) (Unger

et al. 2001). The changes in physical and mechanical properties of wood due to

aging originate from changes in the microstructure and in effect from chemical

changes in the components. Since storage conditions determine what kind of

chemical processes may occur, it is obvious that they have a significant effect on the

aging process. In the case of wood, aerobic and anaerobic conditions have to be

identified (Fengel 1991).
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Aerobic aging

Wood is most stable when stored indoors in dry air. Due to favorable conditions

(low temperature and UV radiation, and no contact with liquid water), the effect of

aging on its structure appears to be minimal, even for archeological wood up to an

age of 4400 years, as long as no insect or fungi attacks have occurred (Nilsson and

Daniel 1990).

Wood located outdoors is exposed to direct sunlight and undergoes chemical

degradation caused by UV radiation. According to Norrstrom (1969) in Kuo and Hu

(1991), lignin contributes 80–95 %, carbohydrates 5–20 %, and extractives about

2 % to the total UV absorption coefficient of wood. Thus, lignin is the cell wall

component most sensitive to UV light. It was also shown that lignin transfers the

UV light to cellulose resulting in degradation of cellulose (Yoshimoto 1972).

Besides photodegradation, surface thermal degradation also has to be taken into

account, as the surface temperature of outdoor-irradiated wood can reach 60–90 �C
depending on its color (Tolvaj and Molnár 2008). Furthermore, erosion of wood by

means of wind and rain occurs (Unger et al. 2001), allowing photodegraded

substances to be easily washed out (Nemeth 1998). Wood exposed to weathering is

also subjected to mechanical stresses due to fluctuations in temperature and

humidity (Borgin et al. 1975b). These combined effects lead to decomposition of the

surface layers and result in a chequered, gray surface in the long term (Unger et al.

2001).

Anaerobic aging and fossilization

Anaerobic conditions emerge when the wood is buried in the ground or submerged

in water. In the case of buried wood, a relatively rapid removal of amorphous or

paracrystalline cellulose occurs, and a slower conversion of crystalline to non-

crystalline cellulose takes place as well (Chowdhury et al. 1967). In a very slow

fossilization process, the cell wall substance is transformed into highly condensed

compounds (coalification) or is substituted by minerals (silification) (Fengel 1991).

The degradation may be influenced by ground water leaching and the acid–base and

oxidizing–reducing characteristics of this water (Florian 1990).

Extended storage in water causes swelling of the secondary cell walls and slow

hydrolyzation of the carbohydrates, resulting in the loosening of the fibrillar texture,

which may be supported by soft rot fungi and tunnelling bacteria (low amounts of

oxygen are necessary) and erosion bacteria (in nearly or completely anoxic

environments). Further degradation occurs as the crystalline structure of the

cellulose is broken down. The residual lignin skeleton may maintain the original

shape while in water, however, drying of the material results in cell collapse.

Consequently, waterlogged wood undergoes extreme shrinkage and tends to split,

warp, and crumble when moved to ambient air (Hoffmann and Jones 1990; Björdal

2012; Pedersen et al. 2013).

Wood Sci Technol (2016) 50:7–22 9

123



Accelerated aging and heat treatment

Different artificial aging methods, which were mostly designed to simulate the

conditions of outdoor weathering or photodegradation processes indoors, were

developed to investigate the property changes of naturally aged wood (e.g., Chang

and Chang 2001; Follrich et al. 2011; cf. also chapter 3.2.). One suitable method for

accelerated aging, which concerns the whole wood including the inner parts, is

thermal treatment (Matsuo et al. 2011; Ganne-Chédeville et al. 2012; Froidevaux

and Navi 2013).

Generally, heat treatment is applied to grade up the wood properties in the field

of dimensional stability (Yildiz 2002; Popper et al. 2005; Li et al. 2011) and decay

resistance (Weiland and Guyonnet 2003; Hakkou et al. 2006) as well as color

changes (Bekhta and Niemz 2003; Brischke et al. 2007). However, it was shown

that strength properties decrease as a result of thermal treatment (Bekhta and Niemz

2003; Poncsák et al. 2006; Pfriem et al. 2010). These alterations are a result of

chemical changes due to high temperatures (Rowell et al. 2009). Thereby, aging

processes can be compared with a mild thermal treatment. Whereas most

industrialized heat treatment processes involve temperatures between 150 and

260 �C, thus, mild temperatures in the range of about 100 to 150 �C were used for

accelerated aging (Sandberg et al. 2013).

The most important effect of heat treatment on the chemical properties of wood is

the degradation of hemicelluloses, which has been reported by many authors

(Tjeerdsma et al. 1998; Yildiz et al. 2006; Gonzalez-Pena et al. 2009; Niemz et al.

2010). This might be responsible for color changes (Bourgois et al. 1991) and for

improved decay resistance (Hakkou et al. 2006) and correlates with reduced strength

as well (Niemz et al. 2010). As the hydroxyl group content of hemicelluloses

decreases, wood becomes less hydrophilic, resulting in lower equilibrium moisture

content (EMC) and better dimensional stability (Tjeerdsma et al. 1998; Weiland and

Guyonnet 2003). The weight loss observed during thermal treatment (Tjeerdsma

et al. 1998) is probably also caused by degradation of hemicelluloses (Gonzalez-

Pena et al. 2009). Thereby, the degradation of wood strongly depends on

temperature, moisture conditions, and treatment time (Stamm 1956).

Although the apparent lignin content increases, structural changes were reported,

indicating that some deterioration took place (Tjeersdma and Militz 2005;

Gonzalez-Pena et al. 2009; Niemz et al. 2010). Cellulose alters only slightly, and

its crystalline structure remains intact even at high temperatures (Yildiz et al. 2006).

However, some degradation in the amorphous regions occurs, consequently

decreasing the accessibility of hydroxyl groups and resulting in higher crystallinity

of cellulose (Nakao et al. 1989; Wikberg and Maunu 2004). These changes together

with the increased porosity and average pore diameter reported by Pfriem et al.

(2009) contribute to the decreasing EMC (Bekhta and Niemz 2006; Esteves and

Pereira 2009; Niemz et al. 2010).

In addition, artificial drying at higher temperatures already influences the wood

properties. Chemical changes arise mainly at temperatures above 100 �C, while
negative drying effects are negligible below 71 �C (Winandy 1996). Bending,

impact bending, and tensile strength of spruce wood are not affected by drying even
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at 80 �C (Oltean et al. 2011), and no changes in the static strength properties were

observed up to drying temperatures of 110 �C (Teischinger 1992b). However,

fracture toughness was found to decrease by drying at temperatures as low as 50 �C,
with the effect being more pronounced above 100 �C. For specimens subjected to

high-temperature (100–110 �C) drying, the decrease in fracture toughness was

accompanied by severe microstructural damage (Teischinger 1992b; Stanzl-

Tschegg et al. 1994). Other properties, like EMC, swelling and shrinkage, and

color, may be influenced as well. For more literature, see Teischinger (1991, 1992a).

In many cases, the property changes of heat treatment are different to those of

natural aging. According to Noguchi et al. (2012), aged samples of Japanese red

pine showed lower damping and higher sound velocity than recent wood, while

thermal treatment increased damping. This qualitative difference might result from

differences in the moisture content (MC) of wood during natural aging and thermal

treatment, since MC is known to have a significant effect on the aging process

(Erhardt et al. 2000; Chen et al. 2012; Sonderegger et al. 2014). Investigations by

Fourier transform infrared spectroscopy (FTIR) and UV resonance Raman

spectroscopy on spruce wood showed signs of hemicellulose degradation of

naturally aged wood, while hydrothermal treatment up to 160 �C caused mainly

alterations in lignin (Ganne-Chédeville et al. 2012). Despite these differences,

knowledge of artificially aged wood can contribute to the characterization and

understanding of the natural aging process, even if it cannot be perfectly simulated.

Further influencing factors on aged wood

Wood preservatives

In investigations on aged wood that has served in practice, the possibility of a

preservation treatment must be considered. Until the sixteenth century, materials

like tar, pitch, plant oils, wood distillation products, smoke, and mercury and arsenic

compounds were applied to protect wood (Clausnitzer 1990), some of them as early

as around 4000 BC (Lohwag 1967). In addition to the former, distillation products

of coal, various waterborne salts, fluorine and boron, and other organic compounds

were in use, particularly since the seventeenth century (Clausnitzer 1990). From the

end of the nineteenth century, chemical wood protection has been undergoing

extensive development. Today’s preservation practices are introduced in, for

example, Ross (2010).

However, the application of chemicals does not only influence its durability.

Materials penetrating wood can also modify its chemical composition and thus

influence the results of a chemical analysis even when they are not bound

chemically to the wood substance. Preservatives containing salts may change the

hygroscopic behavior of wood (Niemz 1993). Mechanical properties may also be

influenced, mainly due to temperature effects occurring during the treatment (Ross

2010). Surface treatment usually penetrates only the outer layers of the wood and

thus has no direct influence on the inner parts. However, finishing can act as a water

barrier by hindering sorption processes.
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Effects of long-term loading

Most objects made of wood are subjected to external loading during their service to

a greater or lesser extent. Long-term or repeated loading can lead to permanent

changes in the material, even when no fracture occurs, and thus the damage cannot

be seen with the naked eye. Therefore, the rheological behavior of wood and the

load history of the material have to be taken into account when investigating the

effect of aging on the mechanical properties. For examples and summaries of the

voluminous literature on this topic, see Holzer et al. (1989) and Smith et al. (2003).

The most critical of the long-term loading factors are the magnitude and types of

stress, the rate and duration of load, MC and temperature, and the material

characteristics (Bodig and Jayne 1993). Several models (e.g., Madison curve,

Barrett and Foschi models, and Foschi and Yao model) enable calculating the

duration of load (DOL) effect (Wood 1951; Barrett and Foschi 1978, Foschi and

Yao 1986). Thereby, the height of the load crucially affects the rate of ultimate

strength reduction during aging, which has to reach a certain stress threshold (e.g.,

for the Foschi and Yao model, 0.53 % of the short-term ultimate strength has to be

attained), below which no DOL effect is measured (Fridley et al. 1996b).

Furthermore, in dynamic (cyclic) load, the influence is time-dependent and change

of wood moisture increases the DOL effect (see, e.g., Reichel 2015). For example,

two studies report no changes and therefore no DOL effect on the mechanical

performance of structural roof timber elements after a service time of 85 and

600 years, respectively (Deppe and Rühl 1993; Fridley et al. 1996a, b). In contrast,

structural members of wooden towers showed microstructural damage similar to

compression failures of standing trees caused by storms and thus a diminished

impact bending strength and Young’s modulus after only 30 years of service due to

long-term load with punctually high stresses caused by wind and additionally

periodic shrinking stresses (Kollmann and Schmidt 1962).

Properties of naturally aged wood

Chemistry

Due to the different structures of the main chemical wood components (cellulose,

hemicelluloses, and lignin), the characteristic degradation processes as well as their

sensitivity to degradation differ remarkably. As cellulose has an extremely ordered

and high degree of intermolecular association within the fibrils, it exhibits a low

solubility in most solvents and a relatively strong resistance to hydrolysis.

Hemicelluloses, on account of their less ordered structure, have higher solubility

and are more readily hydrated. Ether and carbon–carbon bonds make lignin resistant

to hydrolysis, but it is susceptible to oxidizing reagents (Hedges 1990; Fengel 1991).

In the following, diverse studies on the chemistry of aged wood are presented.

Table 1 gives an overview of the results. According to Holz (1981), no significant

differences of the investigated lignin, cellulose, pentosane, and ash content were

found between spruce wood estimated to be about 180 years old and recent
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reference samples. Equally, Garcı́a Esteban et al. (2006) noted no chemical

discrepancies (analyzed by FTIR) in the cell wall of 205-year-old Scots pine

compared with recent wood; however, crystallinity was found to be lower in the

former. For older softwoods (300- to 800-year-old fir, spruce, and larch wood),

Tomassetti et al. (1990) determined, by means of thermogravimetric (TG) analysis,

an increase in the lignin and ash portions and a decrease in the cellulose part with

increasing wood age, and Erhardt et al. (1996) observed some degradation of the

hemicellulose (hydrolysis of xylan) and a decrease in the amount of crystalline

material in 300- to 400-year-old Scots pine. In contrast, the crystallinity of the

investigated Japanese softwoods hinoki (300–1400 years) and Japanese red pine

(170–500 years) remained more or less constant (Yonenobu and Tsuchikawa 2003;

Table 1 Change of wood properties during aging
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Reference

Softwoods:
Abies alba Mill. / Silver fir n.a. Lang (2004)

300-800 Tomassetti et al. (1990)
Chamaecyparis obtusa Endl. / 
Hinoki

300-1300 Kohara and Okamoto 
(1955)

500-1600 Kawai et al. (2008)
1250 Yonenobu and 

Tsuchikawa (2003), 
Tsuchikawa et al. (2005)

1400 Inagaki et al. (2008)
<1600 Yokoyama et al. (2009)

Juniperus phoenicea L. / 
Phoenician juniper

4100-4400 Van Zyl et al. (1973), 
Borgin et al. (1975a)

Larix decidua Mill. / European 
larch

300-800 Tomassetti et al. (1990)

Picea abies [L.] Karst. / Norway 
spruce

60(-180?) Holz (1981)

100 Kurtoglu (1983)
115-290 Kranitz et al. (2014)
300 Schulz et al. (1984)
200-500 Ganne-Chédeville et al. 

(2012)
300-800 Tomassetti et al. (1990)
n.a. Baron (2009)
n.a. Lang (2004)

Pinus densiflora Siebold et Zucc. / 
Japanese red pine

270 Ando et al. (2006)

300 Noguchi et al. (2012)
170-500 Saito et al. (2008)

Pinus pinea L. / Stone pine 4100-4400 Van Zyl et al. (1973), 
Borgin et al. (1975a)

Pinus strobus L. / Eastern white 
pine

140 Attar-Hassan (1976)

Pinus sylvestris L. / Scots pine 205 García Esteban et al. 
(2006)

150-400 Rug and Seemann (1989)
300-400 Erhardt et al. (1996)
600 Deppe and Ruhl (1993)

Hardwoods:
Tilia cordata Mill. / Small-leaved 
lime

150-270 Popescu et al. (2007)

Acacia nilotica (L.) Willd. Ex 
Delile

4100-4400 Van Zyl et al. (1973), 
Borgin et al. (1975a)

Quercus sp. / Oak 60-260 Gawron et al. (2012)
Pterocarpus sp. 500 Narayanamurti et al. 

(1961)
Tectona grandis L. fil / Teak 1800 Narayanamurti et al. 

(1958)
2200 Chowdhury et al. (1967)

Zelkova serrata Makino / Keyaki 240-650 Kohara and Okamoto 
(1955)

Legend: : increase, : decrease, - : no change, ~ : increase (for the first 100 years) and decrease (afterward), R: radial

Summary of literature data. :: increase, ;: decrease, –: no change, ~: Increase (for the first 100 years) and

decrease (afterward), R: radial
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Tsuchikawa et al. 2005; Ando et al. 2006; Inagaki et al. 2008; Saito et al. 2008) or

were slightly higher (Japanese red pine (Saito et al. 2008)) with an increase in these

characteristics found in hinoki for the first 100 years followed by a decrease

(Kohara and Okamoto 1955). Analogue to other softwoods, the amount of

‘‘cellulosic materials’’ decreases in the two Japanese softwoods (Kohara and

Okamoto 1955; Saito et al. 2008). Furthermore, for hinoki, a loss of the amorphous

regions of cellulose was stated for the aged wood (Tsuchikawa et al. 2005;

Yonenobu and Tsuchikawa 2003), also the hemicellulose degrades (furanose and

pyranose) and a looser arrangement of the microfibrils takes place (Tsuchikawa

et al. 2005), whereas the soluble constituents increase (Kohara and Okamoto 1955).

Regarding European hardwoods, hemicelluloses degraded (hydrolyzes of xylan)

and levoglucosan content increased in 150- to 180-year-old lime wood from

painting supports. The latter indicates an increase in the more ordered part of the

cellulose macromolecule (Popescu et al. 2007). Also for oak, an increase in the

cellulose crystallinity index was shown with aging (Gawron et al. 2012). Regarding

Japanese and Asian hardwoods, the amount of cellulose and crystallinity decreased,

whereas soluble constituents increased in 240- to 650-year-old keyaki wood

(Kohara and Okamoto 1955). For 500-year-old Pterocarpus wood gathered from an

altar, cellulose content was found to be lower than usual values in recent wood,

while lignin content was higher (Narayanamurti et al. 1961), and for a 2200-year-

old teak sample, a significant difference in birefringence and a decrease in the

cellulose and pentosan content were reported (Chowdhury et al. 1967).

Specific changes of the chemical components were apparent in 4100- to

4400-year-old Juniperus phoenicea, Pinus pinea, and Acacia nilotica samples found

in pyramids in Egypt. Besides an increase in ash content, the analysis revealed

higher holocellulose and lower lignin content for the aged samples than for recent

wood. Considering the higher-carbonyl-group content found for the aged samples,

the authors assume that oxidation of the lignin had taken place, which had degraded

the macromolecules to smaller (soluble) units. Also, a reduction in birefringence

was measured, which indicates a reduction in the amount of crystalline cellulose

(Van Zyl et al. 1973; Borgin et al. 1975a, b).

Color

The color of wood depends on its basic chemical composition (Hon et al. 1985), and

thus discolorations should be a result of alterations in the chemical components.

Photodegradation is an important factor causing color changes in wood under

natural conditions. The depth of penetration and the initiated chemical changes

depend on the wavelength of the irradiation (Kataoka et al. 2007), and thus the

effects of different light spectra are not the same. When wood is exposed to direct

sunlight, severe damages are induced by UV radiation (Tolvaj and Faix 1995; Papp

et al. 2005). In the case of objects stored indoors, the sunlight spectrum is mostly

filtered by window glass, resulting in a reduced UV radiation intensity. Furthermore,

artificial light sources are present as well. Thereby, accelerated lightfastness testing,

for example, with a UVA 351 lamp, suitably simulates indoor color changes (Chang

and Chang 2001). While photodegradation of wood is considered a superficial
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process due to limited penetration of light into wood (Kataoka et al. 2007; Kataoka

2008), thermal oxidation may affect the whole cross section. However, color

changes by natural aging and by heat treatment are similar, due to oxidation

processes in both cases (Matsuo et al. 2011). The intensity of the color change is

high at the onset of aging and decreases with elapsed time (Kohara 1955; Oltean

et al. 2008; Miklecic et al. 2011, 2012). For example, aged spruce, fir, oak, and

hinoki wood show a decrease in lightness and an increase in chromaticity similar to

a low heat treatment (Bekhta and Niemz 2003; Brischke et al. 2007; Matsuo et al.

2011; Sonderegger et al. 2015).

Hygroscopic behavior

Considering that most problems with wooden cultural heritage objects occur due to

swelling and shrinkage of wood, information about the hygroscopic behavior of

aged wood is very important. Unfortunately, only a few and partly inconsistent

references regarding the swelling of aged wood could be found (cf. Table 1). A

decrease in the swelling coefficients was reported on hinoki and keyaki wood, aged

up to 1300 and 650 years, respectively (Kohara and Okamoto 1955). In contrast, an

increase in swelling in a 300-year-old spruce beam was observed (Schulz et al.

1984), which, however, can be explained by the clearly higher density of the aged

wood (cf. Sonderegger et al. 2008). No significant differences in swelling were

reported on spruce specimens aged 60–180 years (Holz 1981), and no changes

could be proven for Scots pine aged 300–400 years either (Erhardt et al. 1996).

More studies are available considering the sorption isotherms and EMC

(Table 1). Sorption curves of aged spruce and fir specimens are slightly shifted to

lower EMC values (Kurtoglu 1983; Lang 2004). Also, the EMC of hinoki and

keyaki decreases with increasing wood age (Kohara and Okamoto 1955; Inagaki

et al. 2008; Kawai et al. 2008; Yokoyama et al. 2009). In contrast, no difference or

only a slight decrease was observed in the EMC of aged wood of various species

(Buck 1952), and no significant changes or even an increase in the sorption curves

are reported for aged Scots pine compared with recent wood (Erhardt et al. 1996;

Garcı́a Esteban et al. 2006). Thereby, a decrease in adsorption sites in hemicel-

luloses or amorphous cellulose may contribute to lower EMC values (Inagaki et al.

2008), whereas decreasing crystallinity induces contrary effects (Garcı́a Esteban

et al. 2006). The decrease in adsorption sites could be confirmed by CO2 adsorption

tests (Horvath and Kawazoe 1983) of 1300-year-old hinoki wood. The pore volume

of aged wood is reduced due to a decrease in the number of micropores (\0.6 nm),

which results in stabilization of the microstructure (Kojiro et al. 2008). Equally for

liquid water uptake, the total amount of water taken up by 1500-year-old teak

samples was considerably lower due to a clear decrease in their hygroscopicity

(Narayanamurti et al. 1958).

Mechanical behavior

Knowledge of the mechanical properties of aged wood not only is important for the

conservation of wooden heritage but must also be considered when recycling wood.
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In Table 1, a short overview of studies on the topic presented in the following is

given.

Most studies on the mechanical behavior of wood deal only with a few selected

properties. Compression strength has been relatively often investigated, primarily

by condition assessment of aged wood structures. Measurements on constructions of

softwoods like spruce, fir, or Scots pine do not show any changes in the compression

strength for at least up to 400 years of age (Ehlbeck and Görlacher 1988, 1993; Rug

and Seemann 1989; Deppe and Rühl 1993; Nier 1994; Weimar 2000; Lang 2004;

Lißner and Rug 2005). Investigations on Eastern white pine, aged 140 years, Scots

pine, aged 260–480 years, and 300-year-old spruce roof elements even show an

increase in the compression strength (Attar-Hassan 1976; Schulz et al. 1984;

Witomski et al. 2014), but the strength of hinoki decreases after about 100 years

(Kohara and Okamoto 1955). For hardwood, compression strength is unaltered for

500-year-old Pterocarpus (Narayanamurti et al. 1961), whereas 1800-year-old teak

shows an increase (Narayanamurti et al. 1958) and keyaki, aged up to 650 years,

decreases in strength compared with recent wood (Kohara and Okamoto 1955). The

hardness of aged wood shows similar tendencies to compression strength (Kohara

and Okamoto 1955; Attar-Hassan 1976).

Determination of bending strength and Young’s modulus in the longitudinal

direction is also frequently established when investigating aged wood. Several

studies on softwoods used in construction did not show any differences between

bending strength of recent and aged wood up to 400 years (Ehlbeck and Görlacher

1988, 1993; Rug and Seemann 1989; Nier 1994; Horie 2002; Baron 2009), or they

indicate that the strength of aged wood even increases (Schulz et al. 1984). Values

for aged hinoki wood from historical buildings, which were density corrected, are

similar to those of recent wood even up to 1600 years (Yokoyama et al. 2009),

whereas uncorrected values show a decrease after about 100 years (Kohara and

Okamoto 1955). A decrease in strength is also found for Eastern white pine (Attar-

Hassan 1976).

A decrease in static bending Young’s modulus was observed for aged spruce and

Eastern white pine (Attar-Hassan 1976; Lang 2004), but by means of ultrasound

tests, an increase in dynamic Young’s modulus was measured (Attar-Hassan 1976;

Kránitz et al. 2014). For aged Scots pine, no significant change or otherwise a

decrease in Young’s modulus were found, depending on the author (Erhardt et al.

1996; Lang 2004). No deterioration regarding Young’s modulus was observed in

Jeso spruce and Sakhalin fir (Horie 2002). Inconsistent results are reported for aged

Japanese red pine and hinoki wood with an increase in Young’s modulus (Kawai

et al. 2008; Noguchi et al. 2012), no change (Yokoyama et al. 2009) or a decrease

(Saito et al. 2008), or an increase for the first 100 years followed by a decrease

(Kohara and Okamoto 1955).

For hardwood, a decrease in bending strength and Young’s modulus was

observed both for 500-year-old Pterocarpus specimens (Narayanamurti et al. 1961)

and for keyaki wood aged up to 650 years (Kohara and Okamoto 1955).

In the radial direction, a decrease of about 25 % in rupture strength was observed

on 200- to 500-year-old spruce specimens by microtensile tests, but no differences

in Young’s modulus were found (Froidevaux et al. 2012). Also for hinoki wood
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aged up to 1580 years, bending strength and breaking strain in the radial direction

were significantly lower compared with recent samples (Yokoyama et al. 2009).

Investigations on tensile strength are contradictory. Whereas an increase in

strength for 300-year-old spruce wood is reported (Schulz et al. 1984), 140-year-old

Eastern white pine shows a decrease compared with recent wood (Attar-Hassan

1976).

Wood might become more brittle with aging (Attar-Hassan 1976; Kawai et al.

2008). Many authors report a decrease in the absorbed energy in the (impact)

bending test for aged wood (Kohara and Okamoto 1955; Schulz et al. 1984; Weimar

2000; Lang 2004; Baron 2009; Yokoyama et al. 2009). Samples investigated in

these studies served in constructions for 300–1600 years and consist mainly of

softwoods with the hardwood keyaki as the only exception. Inspections of the

fracture surfaces reveal a higher proportion of brittle fractures for aged wood than

for recent wood (Weimar 2000; Lang 2004). However, for a short service time of

30–80 years, no difference in the impact bending strength of two Japanese

softwoods was observed (Horie 2002).

Regarding shear strength, the values of aged Eastern white pine increased and

that of hinoki and keyaki wood decreased with age (Attar-Hassan 1976; Kohara and

Okamoto 1955), but no difference between the shear strength of 270-year-old

Japanese red pine and recent wood could be detected. However, acoustic emission

analysis during the shearing tests showed more brittleness of the aged wood. A

relatively long and stable progress of microcracking was found before the final

fracture, with the fracture surfaces appearing more uneven and complex on the

microscopic level. Also, besides intra-wall failure, trans-wall failures, which were

initiated mainly from the bordered pits, occur in the case of aged wood (Ando et al.

2006).

Under dry conditions, 200- to 500-year-old spruce wood tends to creep and relax

more than recent wood, but no significant differences occur in wet climates. Creep

recovery and relative mechano-sorptive strain are similar for aged wood to recent

wood, but the irreversible part is clearly greater (Froidevaux et al. 2012).

Conclusion

The literature study provided an insight into the aging process and the different

kinds of aging. In addition, the property changes of aged wood were discussed. The

topic has been investigated worldwide, many of them originating from Japan. It was

shown that in addition to environmental influences the species of the wood also has

a high influence on the property changes of aged wood. In many cases, aging of

wood can be compared with the effect of a low thermal treatment in the range of

about 100 to 150 �C which is used to simulate accelerated aging.

Despite often contradictory trends concerning wood aging, which may be

influenced by the difficulty in specimen matching, conditions during aging, or

different test methods, some general statements can be deduced from the analyzed

literature data (cf. Table 1). Concerning the property changes, generally, the

hemicellulose content decreased with increasing age, whereas the ash content
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increased. Also in most of the cases, the EMC slightly decreased with increasing

age. On the other hand, inconsistent results were found for crystallinity,

holocellulose and amorphous cellulose, lignin and extractives, and swelling and

shrinkage. The wood darkened with increasing age, and the color tended toward

higher chromaticity values. Whereas no, or inconsistent, trends were found in many

cases for the mechanical properties parallel to the grain, and therefore, the influence

of aging was very low, the increased brittleness of aged wood induced reduced

strength properties perpendicular to the grain (bending, tension) as well as reduced

impact bending strength and lower strain (especially plastic strain).

Preferably, this comprehensive information about wood aging contributes to a

better understanding of its influencing factors and aids in the proper conservation of

wooden cultural heritage objects and also encourages a greater extent of reuse of

aged wood.
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